Tellurite-mediated thiol oxidation in Escherichia coli.

نویسندگان

  • R J Turner
  • J H Weiner
  • D E Taylor
چکیده

The oxyanion of tellurium, tellurite (TeO3(2-)), is toxic to most micro-organisms, particularly gram-negative bacteria. The mechanism of tellurite toxicity is presently unknown. Many heavy metals and oxyanions, including tellurite, interact with reduced thiols (RSH). To determine if tellurite interaction with RSH groups is involved in the toxicity mechanism, the RSH content of Escherichia coli cultures was assayed. After exposure to tellurite, cells were harvested and lysed in the presence of the RSH-specific reagent 5,5'-dithiobis(2-nitrobenzoic acid). Upon exposure of tellurite-susceptible cells to TeO3(2-), the RSH content decreased markedly. Resistance to potassium tellurite (Te(r)) in gram-negative bacteria is encoded by plasmids of incompatibility groups IncFI, IncP alpha, IncHI2, IncHI3 and IncHII, as well as the tehAtehB operon from the E. coli chromosome. When cells harbouring a Te(r) determinant were exposed to TeO3(2-), only a small fraction of the RSH content became oxidized. In addition to tellurite-dependent thiol oxidation, the resistance of E. coli mutants affected in proteins involved in disulfide-bond formation (dsb) was investigated. Mutant strains of dsbA and dsbB were found to be hypersensitive to tellurite (MIC 0.008-0.015 microg K2TeO3 ml(-1) compared to wild-type E. coli with MICs of 1-2 microg K2TeO3 ml(-1)). In contrast, dsbC and dsbD mutants showed no hypersensitivity. The results suggest that hypersensitivity to tellurite is reliant on the presence of an isomerase activity and not the thiol oxidase activity of the Dsb proteins. The results establish that the Te(r) determinants play an important role in maintaining homeostasis of the intracellular reducing environment within gram-negative cells through specific reactions with either TeO3(2-) or thiol:tellurium products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli.

Tellurite (TeO3(2-)) is highly toxic to most microorganisms. The mechanisms of toxicity or resistance are poorly understood. It has been shown that tellurite rapidly depletes the reduced thiol content within wild-type Escherichia coli. We have shown that the presence of plasmid-borne tellurite-resistance determinants protects against general thiol oxidation by tellurite. In the present study we...

متن کامل

Selenite Protection of Tellurite Toxicity Toward Escherichia coli

In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. D...

متن کامل

The tellurite-resistance determinants tehAtehB and klaAklaBtelB have different biochemical requirements.

The tehAtehB operon from the Escherichia coli chromosome (32.3 min) mediates resistance to potassium tellurite (K2TeO3) when expressed on a multicopy plasmid such as pUC8 (pTWT100). An MIC of 128 micrograms ml-1 is observed when tehAtehB is expressed in a wild-type host and grown on rich media. In this study, the tehAtehB determinant was transformed into mutants deficient in electron transport ...

متن کامل

Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress

The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6...

متن کامل

Tellurite-exposed Escherichia Coli Exhibits Increased Intracellular Α-ketogluta‐ Rate Tellurite-exposed Escherichia Coli Exhibits Increased Intracellular Α- Ketoglutarate 2 3

22 23 The tellurium oxyanion tellurite is toxic to most organisms because of its 24 ability to generate oxidative stress. However, the detailed mechanism(s) how this 25 toxicant interferes with cellular processes have yet to be fully understood. As part 26 of our effort to decipher the molecular interactions of tellurite with living systems, 27 we have evaluated the global metabolism of α-ketog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 145 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1999